ОЭММПУПроблемы машиностроения и надежности машин Journal of Machinery Manufacture and Reliability

  • ISSN (Print) 0235-7119
  • ISSN (Online) 3034-5804

Нелинейное деформирование однонаправленного углепластика при внутрислойном сдвиге в условиях скоростного нагружения

Код статьи
S0235711925010027-1
DOI
10.31857/S0235711925010027
Тип публикации
Статья
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том / Номер выпуска 1
Страницы
11-19
Аннотация
При проектировании элементов тонкостенных конструкций из композиционных материалов основными исходными данными являются характеристики однонаправленного слоя, которые в значительной степени обеспечиваются свойствами матрицы и ее адгезией к волокну. В настоящей статье с помощью нелинейного определяющего соотношения Работнова описаны закономерности деформирования при внутрислойном сдвиге однонаправленного углепластика с термопластичной матрицей в условиях повышенной температуры. Использование свойств резольвентных операторов, используемых в наследственной механике твердых тел, и выбор аппроксимации кривой мгновенного деформирования позволили выполнить обращение определяющего соотношения Работнова. Сравнение с результатами экспериментов показало корректность предложенного подхода.
Ключевые слова
определяющее соотношение наследственная упругость резольвентный оператор скоростное нагружение
Дата публикации
21.10.2025
Год выхода
2025
Всего подписок
0
Всего просмотров
31

Библиография

  1. 1. Kaddour A. S., Hinton M. J., Li S., Smith P. Instructions to contributors of the third World-Wide Failure Exercise (WWFE-III): Part A. Elsevier, 2004. 48 p.
  2. 2. Soden P. D., Kaddour A. S., Hinton M. J. Recommendations for designers and researchers resulting from the world-wide failure exercise // Composites Science and Technology. 2004. V. 64. P. 580–604.
  3. 3. Hinton M. J., Kaddour A. S., Soden P. D. (eds.) Failure Criteria in Fibre Reinforced Polymer Composites the World-Wide Failure Exercise. Elsevier, 2004. 1269 p.
  4. 4. Jacob G. C., Starbuck J. M., Fellers J. F., Simunovic S., Boeman R. G. Strain rate effects on the mechanical properties of polymer composite materials // J. Appl. Polymer Science. 2004. V. 94 (1). P. 269–301.
  5. 5. Daniel I. V., Werner B. T., Fenner J. S. Strain-rate-dependent failure criteria for composites // Composite Science and Technology. 2011. V. 71. P. 257–364.
  6. 6. Koerber H., Xavier J., Camanho P. P. High strain rate characterization of unidirectional carbon-epoxy IM7-8552 in transverse compression and in-plane shear using digital image correlation // Mechanics of Materials. 2010. V. 42. P. 1004–1019.
  7. 7. Tsai J., Sun C. T. Constitutive model for high strain rate response of polymeric composites // Composite Science and Technology. 2002. V. 62. P. 1289–1297.
  8. 8. Kawai M., Masuko Y., Kawase Y., Negishi R. Micromechanical analysis of the off-axis rate-dependent inelastic behavior of unidirectional AS4-PEEK at high temperature // Int. J. of Mechanical Sciences. 2001. V. 43. P. 2069–2090.
  9. 9. Gross B. Mathematical structure of the theories of viscoelasticity. Paris: Hermann & Cie Editeurs, 1953. 75 p.
  10. 10. Бугаков И. И. Ползучесть полимерных материалов. М.: Наука, 1973. 288 с.
  11. 11. Работнов Ю. Н. Элементы наследственной механики твердых тел. М.: Наука, 1977. 384 с.
  12. 12. Kawai M., Masuko Y. Macromechanical modeling and analysis of the viscoplastic behavior of unidirectional fiber reinforced composites // J. Compos. Materials. 2003. V. 37 (21). P. 1885–1902.
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека