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но-рассеянных электронах и результатов рентгеноспектрального микроанализа разра-
ботана методика определения интенсивности шаржирования титанового сплава про-
дуктами износа абразивного инструмента из карбида кремния. Определены численные 
значения показателей интенсивности шаржирования и законы их распределения. Уста-
новлено влияние радиальной подачи на интенсивность шаржирования.
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В современном машиностроении титан и его сплавы применяют в наиболее на-
укоемких отраслях: авиа- и двигателестроение, ракетное, космическое, химическое 
машиностроения и др. Изделия работают при высоких температурах и в агрессив-
ных средах, подвергаются воздействию знакопеременных нагрузок [1]. При изго-
товлении изделий из титановых сплавов на заключительных операциях абразивной 
обработки особое внимание уделяют качеству обработанной поверхности. Основ-
ной причиной плохой обрабатываемости титановых сплавов являются адгезионная 
активность к абразивному материалу и низкая теплопроводность металла, что об-
уславливает высокие силу и температуру резания, износ абразивного инструмента 
и низкую производительность процесса [2, 3].

Для повышения эффективности шлифования титана используют абразивные ин-
струменты, специальные СОЖ и режимы обработки, снижающие интенсивность ад-
гезионного взаимодействия. Наибольшее распространение при шлифовании титана 
получил инструмент из карбида кремния. Основными преимуществами инструмен-
та являются относительно низкая адгезионная активность карбида кремния к тита-
ну и способность к самозатачиваемости, что ГОСТ 21445 определяет, как «свойство 
абразивного инструмента сохранять работоспособное состояние вследствие образо-
вания новых выступов и режущих кромок у абразивных зерен при абразивной об-
работке». Способность абразивного инструмента к самозатачивемости оценивают 
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коэффициентом самозатачивания K = KP/KW, где KP — коэффициент разрушения; 
KW — коэффициент истирания [4]. Авторами разработана усовершенствованная ана-
литическая модель износа абразивного инструмента, что способствует более глубо-
кому пониманию процесса.

Самозатачиваемость положительно сказывается на  показателях шлифования: 
снижаются сила и температура резания, возрастает производительность обработ-
ки [5]. Тем не менее, самозатачиваемость имеет и отрицательную сторону. Сколов-
шиеся фрагменты абразивных зерен способны внедряться в обрабатываемую по-
верхность. В наибольшей степени внедрение абразивных зерен в обрабатываемую 
поверхность (шаржирование) исследовано на операциях ленточного шлифования, 
пневмо- и гидроабразивной обработки [6, 7]. Шаржирование обработанной поверх-
ности продуктами износа абразивных инструментов, в связи с высокой адгезионной 
активностью металла, наблюдается при шлифовании титановых сплавов [8].

Необходимо отметить, что шаржирование снижает усталостную прочность из-
делия и вносит непредсказуемость в показатели надежности. Например, приводит 
к снижению сопротивлению усталостному разрушению под влиянием высоких тем-
ператур [9]. Наличие шаржирующих абразивных частиц в парах трения в несколько 
раз снижает срок эксплуатации изделия [10].

Для удаления шаржированных в обработанную поверхность абразивных зерен 
вводят дополнительные финишные операции: галтовка, электрополировка, травле-
ние и анодирование [11–13]. При шлифовании необходимо учитывать особенности 
шаржирования, в частности, продукты износа абразивного инструмента можно пол-
ностью вдавить в обработанную поверхность. На последующих проходах в резуль-
тате контакта вершин зерен шлифовального круга с шаржированными возможно 
их дробление и внедрение в обработанную поверхность измельченных кристаллов. 
Не всегда есть возможность использовать финишные операции для удаления шар-
жированных продуктов износа. В связи с этим управление интенсивностью шар-
жирования обработанной поверхности продуктами износа абразивного инструмента 
при шлифовании является актуальной задачей.

Перенос продуктов износа абразивного инструмента на обработанную поверх-
ность, в том числе, в результате диффузии и химических реакций определяют мето-
дом рентгеноспектрального микроанализа. Количественную оценку интенсивности 
переноса дают по приросту на обработанной поверхности химических элементов, 
входящих в  состав абразивного материала [8]. К  сожалению, данным способом 
проблематично контролировать шаржирование продуктов износа абразивных ин-
струментов из сверхтвердых материалов (алмаз, кубический нитрида бора), что обу-
словлено высоким процентом ошибки при измерении малых концентраций легких 
химических элементов (углерод, азот, бор).

Для определения интенсивности шаржирования при шлифовании инструментом 
из сверхтвердых материалов разработан способ, основанный на получении и обра-
ботке полутонового цифрового изображения шлифованной поверхности в обрат-
но-рассеянных электронах [14]. С целью автоматизации расчета показателей интен-
сивности шаржирования, полутоновое изображение шлифованной поверхности, 
преобразуют в бинарное.

Научный и практический интерес представляет использование данного метода 
при шлифовании титана и его сплавов абразивными материалами из карбида крем-
ния. Атомный номер титана более чем в два раза превосходит средний атомный но-
мер химических элементов молекулы карбида кремния. Поэтому, следует ожидать 
существенного различия в уровнях яркости данных объектов, что повышает досто-
верность выделения продуктов износа абразивных инструментов из карбида крем-
ния на поверхности титана.



110 НОСЕНКО и др.

Цель статьи — определение интенсивности шаржирования поверхности титано-
вого сплава продуктами износа абразивного инструмента из карбида кремния при 
шлифовании на основе анализа изображений обработанной поверхности в обратно 
рассеянных электронах.

Методика исследований. Изображения шлифованной поверхности и  данные 
об элементном составе получены на двухлучевом растровом электронном микроско-
пе Versa 3D LoVac. Рентгеноспектральные исследования проводили при ускоряющем 
напряжении 20 кВ, ток зонда 4 нА, диаметр сканирующего пучка электронов 50 нм. 
Погрешность химического состава в анализируемых точках обработанной поверх-
ности определена на основании данных об ошибке, рассчитанных ПО микроскопа 
Versa 3D LoVac. Оценку интенсивности шаржирования осуществляли по фотогра-
фиям шлифованной поверхности в обратно рассеянных электронах [14] при базовом 
увеличении 500 крат. Площадь регистрируемого объекта шаржирования при таком 
увеличении должна быть не менее 0.3 мкм2, что почти в 150 раз превышает площадь 
пучка электронов сканирования.

Показателями интенсивности шаржирования являются средние значения приве-
денных к единице обработанной поверхности площади Sr (мкм2/мм2) и количества 
Nr (мм–2) шаржированных объектов. Третий параметр — средняя площадь объекта, 
шаржированного в обработанную поверхность Sg (мкм2), получен в результате деле-
ния средних значений относительных параметров Sr/Nr.

Шлифование выполняли на  прецизионном профилешлифовальном станке  
CHEVALIER с  числовым программным управлением мод. Smart-B1224III  [15]. 
В  качестве абразивного инструмента использовали круг из  карбида кремния 
1А1 350×20×127 54CF100G10V. С целью исключения влияния легирующих элемен-
тов, входящих в состав титановых сплавов на результаты микрорентгеноспектраль-
ных анализов образцы для проведения испытаний изготовлены из титанового сплава 
ВТ1–0, содержание титана 99.58–99.90% (ГОСТ 19807–91). Режим плоского врезно-
го шлифования: скорость шлифования — 30 м/с, скорость продольной подачи стола 
станка — 12 м/мин, радиальная подача абразивного инструмента (подача на глубину 
шлифования) — 0.005 и 0.010 мм/х, припуск — 0.5 мм. Для охлаждения использовали 
смазочно-охлаждающую жидкость Castrol 9952.

Результаты. Морфология обработанной поверхности (рис.  1) свидетельствует 
об адгезионном взаимодействии титана с абразивным инструментом. Поверхность 
титана покрыта налипами, перенесенными с  вершин абразивных зерен, и  про-
дуктами износа абразивного инструмента. В меньшей степени перенос продуктов 
износа абразивного инструмента наблюдается при шлифовании с радиальной по-
дачей 0.005 мм/х (рис. 1а). Наиболее развитая морфология обработанной поверх-
ности и заметно большее количество продуктов износа абразивного инструмента, 
шаржированных в поверхность металла, наблюдаются при шлифовании с подачей 
0.010 мм/х (рис. 1б). Одним из факторов, влияющим на интенсивность шаржирова-
ния, является износ абразивного инструмента. При одинаковой наработке радиаль-
ный износ абразивного инструмента с подачей 0.010 мм/х в несколько раз больше, 
чем с подачей 0.005 мм/х.

Химический состав материала определяли в точках 1–3 (рис. 2а), базовое увели-
чение 8000 крат. Установлено, что в точке 1 содержится около 62% атомных долей 
кремния Si и 36% атомных долей углерода C (рис. 2б), в точке 2, соответственно, 57% 
и 42% (рис. 2в). В точке 3 атомные доли кремния и углерода, с учетом доверительного 
интервала на средние арифметические значения, практически одинаковы (рис. 3г).

Химическая формула карбида кремния SiC содержит равные атомные доли Si 
и С. Данному условию соответствуют концентрации Si и С в точке 3, (рис. 3г), что по-
зволяет считать внедренный объект в области данной точки карбидом кремния. В точ-
ках 1 и 2 концентрация C, соответственно, в 1.7 и 1.3 раза больше концентрации крем-
ния. Cуммарная концентрация атомов углерода и кремния приближаются к 100%.
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Возможные причины различия концентраций при элементном анализе кри-
сталлов карбида кремния приведены в работе [16]. В связи с отсутствием строгой 
геометрии зерен интенсивность характеристического рентгеновского излучения 
атомами исследуемого материала может быть различной, что отражается на резуль-
татах рентгеноспектрального микроанализа. Во всех рассмотренных микрообъемах 
обнаружен титан, концентрация которого изменяется в интервале 1–3%. В процессе 
скалывания кристалла и шаржирования его в обработанную поверхность возможен 
перенос титана на поверхность абразивного материала. Наличие титана может быть 
обусловлено относительно небольшим размером кристалла и возможностью генера-
цией рентгеновского излучения титана на границе абразив–металл.

На  рис.  3а показаны фрагменты продуктов износа при базовом увеличении 
4000 крат. На поверхности металла, кроме нескольких относительно крупных про-
дуктов износа абразивного инструмента, присутствует большое количество очень 
мелких объектов размером менее 0.5 мкм. Химический анализ материала опреде-
ляли на поверхности наиболее крупных фрагментов продуктов износа абразивного 
инструмента, выделенных цифрами 4, 5 и 6. В отличие от ранее приведенных ре-
зультатов в материале данных объектов концентрация Si в 1.3–2.2 раза превышала 
концентрацию кремния (рис. 3б, в). Содержание титана в атомных долях 1.0–2.5%. 
Отсутствие других химических элементов позволяет отнести оцениваемые объемы 
материала к карбиду кремния.

Рис. 1. Морфология обработанной поверхности при шлифовании
на различных подачах: (а) — 0.005 мм/х; (б) — 0.010 мм/х.

(а) (б)

Рис. 2. Объект внедрения (а) и химический состав материала в области точек 1 (б), 2 (в) и 3 (г).



112 НОСЕНКО и др.

Химический состав материала объекта 6 (рис. 3г) существенно отличается от ра-
нее рассмотренных. Основными химическими элементами являются O, Si, Al, K, 
суммарная атомная доля концентрации которых более 90%. Без учета титана хими-
ческий состав в большей степени соответствует керамической связке. Например, 
в составе распространенной керамической связке марки К10 [17] содержание хи-
мических элементов O, Si, Al и K достигает 95%. Кроме перечисленных элементов 
в связке содержатся Na, B, Fe, Ca, Mg с суммарной концентрацией около 5%. Следы 
Ca и Na обнаружены в анализируемом материале. Несмотря на то, что в рассматри-
ваемой области не обнаружено содержание B, Fe и Mg, по остальным химическим 
элементам исследуемый материал в области точки 6 с высокой вероятностью можно 
отнести к керамической связке.

Одним из факторов, влияющих на оценку количества и площади шаржирующих 
продуктов износа, является их уровень яркости, который должен значимо отличать-
ся от уровня яркости обрабатываемого металла. Продуктами износа абразивного 
инструмента из карбида кремния, как и при шлифовании инструментом из куби-
ческого нитрида бора, являются абразивный материал (в данном случае — карбид 
кремния) и керамическая связка. В связи с этим, на электронных фотографиях шли-
фованной поверхности необходимо определить среднюю яркость обрабатываемого 

Рис. 3. Объекты внедрения (а) и химический состав материала в области точек 4 (б), 5 (в) и 6 (г).

(а) (б)

(в)

(г)
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металла, абразивных зерен и керамической связки. Установлено, что средний уро-
вень яркости металла 222 ± 9, зерен карбида кремния 51 ± 17, связки 62 ± 13 (рис. 4).

Средний уровень яркости продуктов износа абразивного инструмента из карбида 
кремния в 3.6–4.6 раза ниже среднего яркости металла. Средние значения уровней 
яркости зерна и  связки, с  учетом доверительных интервалов, значимого отличая 
не имеют. Исходя из этого, в качестве порогового значения яркости принята верхняя 
граница доверительного интервала среднего значения яркости связки. Дальнейшую 
обработку изображений посредствам бинаризации проводили при пороговом зна-
чении уровня яркости 75.

В отдельных объектах, несмотря на то, что их первоначальная яркость превышала 
пороговое значение, рентгеноспектральный анализ не выявил в этой области про-
дуктов износа абразивного инструмента. Один из таких примеров показан на рис. 5.

На основании результатов рентгеноспектрального анализа установлено, что объ-
екты 1–5 следует считать внедренными кристаллам карбида кремния, где без учета 
Ti основными химическими элементами являются Si и C. В объекте 6 содержание Si 
и С не превышают 0.5%, относительная ошибка в данном примере достигает 50%. 
Встречаются объекты, где ошибка определения концентрации достигает 70–80%. 
Поэтому, несмотря на то что уровень яркости подобных объектов превышает по-
роговое значение, низкая концентрация химических элементов, определяющих 
принадлежность к карбиду кремния или связке, и большое значение относительной 

Рис. 4. Уровни яркости зерна (1), керамической связки (2) и титана (3).

Рис. 5. Предполагаемые объекты внедрения (а) и химический состав материала в области точек 1–6 (б).

(а) (б)
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ошибки определения концентраций (40–90%) позволяют считать, что яркость ана-
лизируемого объекта обусловлена рельефом поверхности.

Установлено, что количество таких объектов не превышает 8% от общего коли-
чества регистрируемых. Площадь подобных объектов в большинстве случаев при-
ближается к предельной минимальной величине, которую можно регистрировать 
при данном увеличении. Поэтому увеличенное число мелких объектов внедрения 
на площадь шаржирования оказывают меньшее влияние. Изменение относительной 
площади шаржирования не превышает 3%.

Для расчета показателей интенсивности шаржирования осуществляли бинари-
зацию полутоновых изображений обработанной поверхности титанового сплава 
в оттенках серого цвета с учетом принятого порога яркости. В результате получили 
черное изображение продуктов износа абразивного инструмента и белое изображе-
ние обработанной поверхности. После бинаризации изображений на каждой фо-
тографии определяли выборочные относительные значения приведенной площади 
Sri (мкм2/мм2) и приведенного количества Nri (мм‑2) объектов шаржирования. Фак-
тическая площадь поверхности, изображенной на фотографии при увеличении 500 
крат 0.41 мм2. Статистические параметры шаржирования (средние арифметические, 
стандартные отклонения и доверительные интервалы на средние арифметические) 
определяли с учетом закона распределения выборочных значений [18].

Обсуждение. В результате обработки данных, полученных при шлифовании в раз-
личных условиях, установлено, что распределение выборочных значений приведен-
ной площади (Sri, мкм2/мм2) и приведенного количества (Nri, мм–2) шаржирующих 
частиц не подчиняются нормальному закону распределения. Расчетные значение 
критерия согласия Пирсона в данном случае превышали критические значений. Для 
проверки возможности распределения показателей интенсивности шаржирования 
по логарифмически нормальному закону все значения выборок были логарифмиро-
ваны и обработаны (рис. 6).

Расчет средних, стандартного отклонения, верхнего и нижнего значений довери-
тельных интервалов выполняли для логнормального закона распределения согласно 
рекомендациям [18]. Установлено, что с вероятностью 0.95 распределения Sri и Nri 
при различных значениях подач на глубину шлифования подчиняются логарифми-
чески нормальному закону, в соответствии с которым определены средние значения, 
стандартные отклонения и доверительные интервалы на средние значения. Оси аб-
сцисс на представленных графиках градуированы для логарифмических значений.

Минимальные средние значения Sr и Nr и получены при шлифовании с подачей 
на глубину 0.005 мм/х (рис. 7а, б).

С увеличением подачи на глубину в 2 раза показатели интенсивности шаржиро-
вания возрастают: Sr — в 5.4 раза, Nr — в 1.8 раза. Среднюю площадь шаржирован-
ных продуктов износа определяли соотношением Sg = Sr/Nr, мкм2. С увеличением 
подачи на глубину Sg возрастает почти в 3 раза (рис. 7в). Износ инструмента с увели-
чением подачи на глубину увеличился в 4 раза (рис. 7г). Показатели шаржирования 
с увеличением глубины шлифования возрастают в разной степени. В большей степе-
ни возрастают средняя приведенная и средняя площадь шаржированных продуктов 
износа, что свидетельствует о смещении вида изнашивания абразивного инструмен-
та от микро- к макроскалыванию.

Выводы. 1. В результате обработки поверхности титанового сплава полученной 
в обратно рассеянных электронах и рентгеноспектрального анализа продуктов из-
носа определен пороговый уровень яркости, обеспечивающий разделение объектов 
на продукты износа абразивного инструмента (кристаллы карбида кремния, керами-
ческая связка), шаржированных в обработанную поверхность, и титановый сплав. 
Относительная ошибка расчета приведенных значений площади Sri и количества 
Nri шаржированных объектов, обусловленная рельефом обработанной поверхности 
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Рис. 6. Распределение Sri (а), (б) и Nri (в), (г) при шлифовании с подачей
на глубину 0.005 мм/х (а), (в) и 0.010 мм/х (б), (г):

▬ экспериментальное; ‒ теоретическое.

(а)

(в)

(б)

(г)

Рис. 7. Показатели интенсивности шаржирования Sr (а), Nr (б), Sg (в), износ абразивного инструмента 
h (г) при шлифовании на различных подачах:

  — 0.005 мм/х;  — 0.010 мм/х.
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не превышает, соответственно, восьми и трех процентов от приведенных значений 
площади и  количества анализируемых объектов, полученных без учета влияния 
элементов профиля обработанной поверхности. 2. Установлено, что распределе-
ние приведенных значений площади Sri и количества Nri шаржированных объектов 
подчиняются логнормальному закону распределения, с учетом которого рассчитаны 
средние значения и доверительные интервалы параметров интенсивности шаржи-
рования. С увеличением радиальной подачи от 0.005 до 0.010 мм/х средние значе-
ния параметров интенсивности шаржирования возрастают: Sr — в 5.4, Nr — 1.8 раза, 
Sg — в 3 раза. Одним из факторов, определяющих рост показателей интенсивности 
шаржирования с увеличением подачи на глубину, является почти четырехкратное 
увеличение износа абразивного инструмента. 3. Параметры шаржирования поверх-
ности титанового сплава продуктами износа абразивного инструмента из карбида 
кремния и методика их определения могут быть рекомендованы к использованию 
при планировании экспериментов и для разработки практических рекомендаций 
по снижению интенсивности шаржирования.
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(филиал) ВолгГТУ.
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