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Выполнен расчет ряда энергетических параметров молекулярных моделей политетраф-
торэтилена и его композита Ф4К20. В результате моделирования трения и износа опре-
делены величины энергий межмолекулярных связей в  объеме построенных моделей 
UV

inter, в поверхностной зоне US
inter и на границе раздела слой переноса — контртело, 

а также рассчитаны величины модулей сдвига моделей исследуемых материалов. Полу-
чено, что в Ф4К20 по сравнению с исходной матрицей происходит повышение всех ука-
занных параметров, что может свидетельствовать о стабилизации кинетического состоя-
ния молекул в присутствии наполнителя. По результатам сравнительного анализа UV

inter, 
US

inter и Uad
inter с величиной интенсивности линейного изнашивания, определенной для 

исследуемых материалов в результате триботехнических испытаний, в качестве крите-
рия, чувствительного к износу на молекулярном уровне, предложена величина UV

inter, 
а  в  качестве дополнительного параметра, характеризующего адгезионную прочность 
слоев переноса, предложено принимать величину Uad

inter.
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Интерес к практическому использованию полимеров и полимерных компози-
ционных материалов (ПКМ) в машиностроении связан с возможностью их приме-
нения в узлах трения, предназначенных для работы в агрессивных средах, включая 
морскую воду, а также, в подвижных соединениях, в которых по условиям эксплуа-
тации исключено применение жидкой и консистентной смазки. Кроме того, замена 
на ПКМ традиционных машиностроительных материалов приводит к упрощению 
конструкций узлов трения, к экономии ресурсов, к снижению общей массы и прод-
лению срока службы механизмов, к возможности работы механизмов в труднодо-
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ступных условиях, где затруднено или невозможно проведение обслуживающих  
мероприятий.

Развитие технологий получения дисперсных наполнителей, включая нанораз-
мерные, значительно расширяет ряд ПКМ и создает предпосылки для отнесения их 
к  классу интеллектуальных материалов. Современные ПКМ обладают достаточно 
высокими физико-механическими свойствами, имеют сравнительно широкий нагру-
зочный и температурный диапазоны [1–5]. Однако для целенаправленного создания 
материалов с требуемыми триботехническими свойствами недостаточно рассматри-
вать их как простую суперпозицию составляющих компонентов. Необходимо углу-
бленное изучение особенностей взаимодействия матрицы и наполнителя, в том числе 
и на молекулярном уровне [6]. Имеющиеся физические модели ПКМ [7] чувстви-
тельны к размерам, содержанию, прочностным характеристикам материалов матри-
цы и наполнителя, а также учитывают структуру, образуемую дисперсным наполни-
телем в матрице, на надмолекулярном уровне. Однако они не объясняют отмечаемого 
разными авторами эффекта изменения износостойкости композитов при введении 
в одну и ту же матрицу различных дисперсных наполнителей в близких концентра-
циях и имеющих сходные размеры [6]. По-видимому, одной из причин имеющихся 
различий может быть изменение энергических характеристик молекулярной струк-
туры полимерных материалов в присутствии наполнителей [8–10]. Таким образом, 
установление закономерностей изменения параметров молекулярных структур ПКМ 
по сравнению с материалом матрицы и возможность сопоставления их с величиной 
износостойкости, может способствовать целенаправленной разработке композитов, 
обладающих оптимальными триботехническими свойствами в определенных условиях 
эксплуатации без необходимости увеличения количества экспериментальных данных.

В настоящей статье применен метод молекулярно-динамического моделирова-
ния для возможности оценки изменения энергетического состояния молекулярной 
структуры ПКМ по сравнению с материалом исходной матрицы. Для исследований 
были выбраны политетрафторэтилен (ПТФЭ) и его композит Ф4К20, состоящий 
из 80 об.% ПТФЭ и 20 об.% кокса, традиционно широко применяемые в узлах тре-
ния, физико-механические и трибологические свойства которых на макроуровне 
хорошо изучены, что, по нашему мнению, дает возможность проведения адекват-
ной сравнительной оценки их износостойкости с изменением энергетических па-
раметров молекулярных структур материалов, как в случае введения наполнителя 
в матрицу, так и в результате моделирования трения и поверхностного разрушения.

Целью настоящей статьи является выявление на молекулярном уровне параме-
тра, чувствительного к износу и пригодного для сравнительной оценки износостой-
кости полимерных материалов.

Метод исследования и материалы. Известно, что полимеры и их композиты мо-
гут эффективно работать в узлах трения без смазки вследствие их способности при 
определенных режимах трения к образованию слоев переноса, разделяющих кон-
тактирующие поверхности. В соответствии с молекулярно-механической теорией 
работа силы трения затрачивается на разрыв адгезионных связей и пластическую 
деформацию. Тогда можно представить работу сил трения, как сумму работ сил ад-
гезии Aτ и износа AI
	 A A AT I� �� . 	 (1)

Объем износившегося материала за путь трения составляет
	 �V I L Sh Т� , 	 (2)
где Ih — интенсивность изнашивания; LТ — путь трения; S — номинальная площадь 
контакта.

Работу, затраченную на износ единицы объема AI∆V, можно записать в виде

	 A
A
VI V
I

� �
� . 	 (3)
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Согласно молекулярно-механической теории трения, молекулярная составляю-
щая коэффициента трения
	 f

p
o

r
� �
�

�, 	 (4)

где τ0 — удельная адгезия; pr — фактическое давление на контакте; β — пьезокоэф-
фициент.

Перепишем выражение (4) в виде

	 fNL
N
p

L NLТ
r

Т Т� �� �0 , 	 (5)

где N — внешняя нормальная сила.
Тогда, решая (2) относительно Ih и используя (3), окончательно находим из (5)

	 I
A

ph
I V

a�
�

�
, 	 (6)

где pa — контактное давление.
Из  (6) можно сделать вывод что, чем больше энергии трения затрачивается 

на разрушение единицы объема материала, тем меньше, при прочих равных услови-
ях, интенсивность изнашивания [11].

Для достижения поставленной цели в  компьютерной программе MATERIALS 
STUDIO были построены молекулярные модели ПТФЭ и Ф4К20, в которых ато-
мы принято изображать шариками, а валентные связи стержнями, соединяющими  
шарики.

Модули сдвига и энергетические характеристики исследуемых материалов опре-
делялись с  применением метода молекулярной динамики, который является эф-
фективным методом для исследования физико-механических и триботехнических 
свойств материалов на молекулярном и атомном уровне. В [12, 13] отмечается, что 
этот метод можно использовать в качестве дополнительного для обоснования резуль-
татов экспериментальных исследований. Моделирование изнашивания проводилось 
в силовом поле COMPASS, которое является первым силовым полем, позволяющим 
достаточно точно прогнозировать свойства конденсированной фазы различных мо-
лекул и полимеров в случае внешнего воздействия [14]. При этом полная потенци-
альная энергия модели E рассматривается состоящей из ряда слагаемых [14, 15]

E E E E E Eb bb b� � � � � � �� ����� ( ) ( ) ( ) ( ) ( ) ( )� �� �

� � � � �� ��� ��E E E Eb b( ) ( ) ( ) ( )� � ��� �

� � �� ���E E Evdw elec( ) ( ) ( ),�� �  

(7)

где b и b' — длины двух соседних связей, соответственно; θ и  θ′ — смежные углы 
между связями; γ — угол отклонения от плоскости; φ — двугранный угол кручения.

Слагаемые в (7) можно разделить на две категории, а именно, E b( )∑ , E ( )Θ∑ ,  
E ( )�� , E ( )��  — слагаемые, учитывающие вклад в величину полной потенциаль

ной энергии каждой из  составляющих; E bb( )�� , E b( )�� , E b( )�� , E b( )′∑ ϕ ,  
E ( )���� , E ( )��� , E ( )���� �  — слагаемые, учитывающие вклад в  величину E, 

вносимые потенциальными энергиями перекрестных связей между составляющими. 
Последние два слагаемых в (7) представляют энергию несвязанного потенциала мо-
дели. Энергия сил Ван-дер-Ваальса, E(vdw), представляется суммой отталкивающих 
и притягивающих членов Леннарда–Джонса. Потенциал электростатической силы, 
E(elec), представляется суммой энергетических взаимодействий между атомами. По-
следние два слагаемых в (7) представляют собой энергию несвязанного потенциала, 
которую можно рассчитать по выражению [14, 15]
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где rij — расстояние между центрами частиц; εij — глубина потенциальной ямы; rij
0 — 

расстояние, на котором энергия взаимодействия становится равна нулю; ε0 — элек-
трическая постоянная; qi, qj — заряды атомов, не кратные зарядам электронов, воз-
никающие вследствие того, что атомы одних элементов стремятся притянуть к себе 
электронную пару ковалентной связи сильнее, чем атомы других элементов. При 
расчете несвязанного взаимодействия применялось ограничение радиуса взаимо-
действия до 1.55 нм [16].

Результаты исследований и их обсуждение. Для определения физико-механических 
свойств ПТФЭ и Ф4К20 на молекулярном уровне были построены их молекулярные 
модели, заключенные в единичные объемы (ячейки) кубической формы с размерами 
ребер 37.81 (Ǻ) и 38.46 (Ǻ), которые после геометрической оптимизации методом 
сопряженных градиентов переводились в устойчивое состояние с среднеквадратич-
ным значением точности сходимости энергии около 0.00001 ккал/моль. Пример ви-
зуализации молекулярных моделей исследуемых материалов представлен на рис. 1.

Рис. 1. Вариант визуализации молекулярных моделей после геометрической оптимизации:  
(а) модель ПТФЭ. (б) модель Ф4К20.

(а) (б)

Сравнительный анализ механических свойств исследуемых материалов прово-
дился по результатам последних 30 визуализаций деформаций растяжения–сжатия 
молекулярных моделей материалов при определенном давлении, числе частиц и ста-
бильной температуре T = 300 K в течение 10 пс после каждого изменения размера 
ячейки. В результате были получены матрицы жесткости Cij и упругости Sij размером 
6 × 6, причем Cij = Sij

–1. Модули сдвига для молекулярных моделей ПТФЭ и его ком-
позита рассчитывались методами Voigt (GV) и Reuss (GR) [17] по (9) и (10). Эффектив-
ные модули сдвига рассчитывались по теории Hill (GH) по (11)

	 G C C C C C C C C CV � � � � � � � � �
1

15
2 2 211 22 33 44 55 66 12 13 23( ; 	 (9)

	 G
S S S S S S S S SR �

� � � � � � � �
15

4 311 22 33 12 13 23 44 55 66( ) ( )
; 	 (10)

	 G G GH V R� �
1
2

( ). 	 (11)
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Кроме этого, были определены величины энергий межмолекулярного взаимо-
действия UV

inter на примере построенных молекулярных моделей ПТФЭ и Ф4К20. 
В табл. 1 приведены результаты расчетов величин GH и UV

inter .

Таблица 1. Модули сдвига и средние значения энергий межмолекулярного взаимодействия 
моделей исследуемых материалов

ПТФЭ Ф4К20
Модуль сдвига GH, ГПа 0.39 0.66
Средние значения UV

inter, ккал/моль 123 1866

Из  данных табл.  1 следует, что величина модуля сдвига модели Ф4К20 более, 
чем в 1.5 раза превышает это значение, определенное для модели ПТФЭ. Известно, 
что механические свойства полимерных материалов оказывают влияние на их три-
бологические свойства [18]. Так как при трении скольжения рабочие поверхности 
контактирующих материалов подвергаются сдвиговым деформациям [18], получен-
ная разница в величинах модулей сдвига может быть одной из причин повышения 
износостойкости Ф4К20 по сравнению с исходной ПТФЭ матрицей. Как следует 
из данных табл. 1, средняя величина UV

inter модели Ф4К20 приблизительно в 15 раз 
выше по сравнению с UV

inter модели ПТФЭ. При этом расчеты показали, что величи-
на энергии сил Ван-дер-Ваальса в модели Ф4К20 приблизительно в 3 раза больше, 
чем в модели ПТФЭ, а абсолютная величина энергии электростатического взаимо-
действия в модели Ф4К20 приблизительно в 2.5 раз больше, чем в модели ПТФЭ. 
По-видимому, увеличение UV

inter при введении в полимер наполнителя можно объ-
яснить образованием усиленной границы раздела между полимерной матрицей 
и наполнителем, в том числе за счет отмеченного повышения сил Ван-дер-Ваальса 
и сил электростатического взаимодействия, что может быть причиной повышения 
износостойкости Ф4К20 по сравнению с ПТФЭ.

Влияние наполнения на способность к поверхностному разрушению исследовалась 
на двухслойных молекулярных моделях ПТФЭ и Ф4К20, где верхний слой представлял 
модель исследуемого материала, а нижний слой состоял из атомов Fe. Поверхност-
ное разрушение моделировалось путем отделения единичных молекул со свободной 
поверхности и из приповерхностной области моделей [11]. Молекулы отделялись вы-
тягиванием нормально к границе раздела полимерный материал — Fe со скоростями  
v = 8 Å/пс и v = 10 Å/пс, в случае отделения молекул с поверхности ПТФЭ и Ф4К20,  
соответственно, а так же со скоростями v = 9 Å/пс и v = 45.5 Å/пс в случае отделения мо-
лекул из приповерхностной области исследуемых материалов, соответственно. Выбор 
скоростей вытягивания молекул определялся минимально возможными значениями, 
при которых происходило полное отделение единичных молекул от моделей исследуе-
мых материалов. На рис. 2 приведены визуализации двухслойных молекулярных моде-

Рис. 2. Двухслойные модели материалов с укрупненным масштабированием единичных молекул перед 
их отделением: (а), (б) — молекулы в поверхностной зоне моделей ПТФЭ и Ф4К20, соответственно; (в), 

(г) — молекулы в приповерхностной зоне моделей ПТФЭ и Ф4К20, соответственно.

(а) (б) (в) (г)
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лей исследуемых материалов, на которых укрупненным масштабированием отмечены 
единичные молекулы, занимающие различные исходные положения [11]. Необходимо 
отметить, что при отделении молекул с поверхности Ф4К20 в продуктах разрушения 
наблюдались только молекулы ПТФЭ, а в случае отделения молекул из приповерхност-
ной зоны модели Ф4К20 дополнительно инициировалось отделение молекул литей-
ного кокса. Результаты моделирования поверхностного разрушения подтверждаются 
данными триботехнических испытаний и микроскопического исследования продуктов 
разрушения Ф4К20 [18], в которых регистрировались микрочастицы литейного кокса, 
заполняющие впадины микронеровностей на рабочей поверхности контртела и фор-
мирующие слой переноса, выглаживающий его поверхность. Таким образом, на по-
верхности контртела может образовываться слой, приводящий к  изменению пары 
трения. Наличием такого слоя, по-видимому, объясняется снижение коэффициента 
износа Ф4К20 при трении по стали, отмечаемое многими экспериментаторами.

Способность к изнашиванию исследуемых материалов на молекулярном уровне 
оценивалась по величине силы внутреннего трения при отделении молекул по вы-
ражению
	 F

E
sf

K�
�

, 	 (12)

где ∆ЕK — изменение кинетической энергии отделяемой молекулы; s — расстояние 
перемещения отделяемой молекулы.

Изменение величины кинетической энергии молекул с учетом разницы в вели-
чинах скоростей молекул в начале и в конце отделения рассчитывалось по формуле

	 �E m v vK � �
1
2 1

2
2
2( ), 	 (13)

где m — масса отделяемой молекулы, кг; v1 и v2 — исходная и конечная скорости от-
деления, соответственно, м/с.

Таблица 2. Значения сил внутреннего трения при отделении молекул с поверхности 
и из приповерхностного положения молекулярных моделей исследуемых материалов

Ff (10–8), Н при отделении 
с поверхности

Ff (10–8), Н при отделении 
из приповерхностной 

области
ПТФЭ 2.38 2.78
Ф4К20 4.47 70.9

Из табл. 2 следует, что при отделении молекулы с поверхности Ф4К20 сила вну-
треннего трения приблизительно в 2 раза выше, чем в модели с ПТФЭ, а при отделе-
нии молекулы из приповерхностного слоя модели с Ф4К20 сила внутреннего трения 
приблизительно в 30 раз выше, чем в модели с ПТФЭ.

Для определения энергии сил межмолекулярного взаимодействия между оделяе-
мой молекулой и остальными молекулами моделей использовалось выражение [11]

	 U U U US
imter m rest� � � , 	 (14)

где U — полная энергия модели; Um — энергия вытягиваемой молекулы; Urest — энер-
гия модели без учета энергии вытягиваемых молекул.

Расчеты по (14) показали, что значение US
inter при отделении молекул с поверх

ности модели ПТФЭ уменьшалось с 36.46 до 2.33 ккал/моль, с поверхности моде
ли Ф4К20 уменьшалось с  49.45 до  2.50 ккал/моль. При отделении молекулы 
из  приповерхностного слоя модели ПТФЭ величина Us

inter уменьшалась с  46.45 
до 2.33 ккал/моль, а в модели Ф4К20 она снижалась с 60.64 до 2.50 ккал/моль. В ре-
зультате по (14) получено, что средняя величина US

inter в модели с Ф4К20, более чем 
на 30% превышает этот показатель, определенный для модели с ПТФЭ.
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Известно, что предпочтительным механизмом изнашивания полимерных мате-
риалов является адгезионный механизм изнашивания, для реализации которого не-
обходимо не только возникновение, но и удержание слоев переноса на рабочей по-
верхности контртела [7, 18]. Для исследования влияния наполнителя на адгезионную 
способность слоев переноса к поверхности контртела были построены трехслойные 
модели ПТФЭ и Ф4К20, где средний слой являлся молекулярной моделью ПТФЭ 
или Ф4К20, размерами 45.86 × 45.86 (Ǻ), и высотой 27.18 (Ǻ), а слои, расположенные 
справа и слева от среднего слоя, состояли из атомов Fe, размерами 45.86 × 45.86 (Ǻ)  
и  высотой 17.57 (Ǻ), Моделирование трения скольжения осуществлялось за  счет 
сдвига крайних слоев в противоположные стороны со скоростью 0.5 Å/пс. Адгезион-
ная прочность слоев переноса к контртелу при сдвиге Uad

inter определялась по сред-
ней величине энергии межмолекулярного взаимодействия на границе с Fe. На рис. 3 
приведены варианты визуализаций трехслойных моделей ПТФЭ и Ф4К20 в резуль-
тате относительного сдвига верхнего и нижнего слоев трехслойных моделей. Необ-
ходимо отметить, что практически на всех визуализациях наблюдалась практически 
равная концентрация молекул ПТФЭ.

Рис. 3. Пример визуализации результатов моделирования трения ПТФЭ и Ф4К20  
на трехслойных моделях: (а) — модель с ПТФЭ; (б) — модель с Ф4К20.

(а) (б)

На рис. 3 хорошо заметны различия в концентрациях молекул ПТФЭ и Ф4К20 
в направлении нормалей к поверхностям раздела слоев. Расчеты показали, что вбли-
зи правой границы с Fe концентрация молекул ПТФЭ приблизительно в 2.5 раза 
выше по сравнению с Ф4К20 и молярная масса ПТФЭ в этой области приблизи-
тельно на  30% выше, чем его композита. Также получено, что средние скорости 
движения молекул в направлении сдвига в моделях ПТФЭ и Ф4К20 и составляют 
0.052 и 0.045 Å/пс (5.2 м/с и 4.5 м/с), а значения Uad

inter равны 5.11E + 03 и 5.87E +  
+ 03 ккал/моль, соответственно. Таким образом, можно предположить, что адге-
зионная прочность слоев переноса Ф4К20 к контртелу на 15% выше по сравнению 
с ПТФЭ.

В результате моделирования трения и изнашивания на примере молекулярных 
моделей ПТФЭ и  Ф4К20 получено, что в  присутствии наполнителя наблюдается 
повышение численных значений характеристик межмолекулярного взаимодей-
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ствия UV
inter, U

ad
inter и US

inter, что, по-видимому, свидетельствует о стабилизации ки-
нетического состояния молекул композита по сравнению с матрицей и согласуется 
с известным фактом повышения износоcтойкости Ф4К20 по сравнению с ПТФЭ. 
На рис. 4 приведены полученные значения UV

inter, U
ad

inter и US
inter и интенсивности 

линейного изнашивания Ih. Данные по Ih были получены в результате эксперимен-
тального исследования износостойкости этих материалов при произведении кон-
тактного давления p и скорости скольжения v равном 1.01 МПа м/с [7].

Из рис. 4 следует, что наиболее заметное различие в численных значениях, имеет 
параметр UV

inter, определенный для моделей ПТФЭ и Ф4К20. Тогда удобно принять 
в качестве критерия, чувствительного к износу на молекулярном уровне, величину 
UV

inter, при этом в качестве дополнительного параметра для характеристики самосма-
зывающих свойств полимерных материалов следует использовать величину Uad

inter .

Рис. 4. Влияние наполнителя из литейного кокса на величины:

(а) — logUV
inter — , logUad

inter — , logUS
inter — , ккал/моль; (б) — Ih – .

Выводы. 1. Проведено молекулярное моделирование структур ПТФЭ и Ф4К20. 
2. Определены численные значения модулей сдвига и энергий межмолекулярного 
взаимодействия моделей ПТФЭ и Ф4К20. 3. По результатам сравнительного ана-
лиза величин энергий межмолекулярного взаимодействия моделей ПТФЭ и Ф4К20 
с интенсивностью линейного изнашивания предложено в качестве критерия, чув-
ствительного к износу на молекулярном уровне, использовать величину объемной 
энергии межмолекулярного взаимодействия UV

inter, а в качестве дополнительного 
критерия использовать энергию межмолекулярных связей между слоем переноса 
и контртелом, Uad

inter. 4. Показана возможность применения теории молекулярной 
динамики для оценки износостойкости полимерных композитов по сравнению с ис-
ходной матрицей.
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