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В статье рассмотрен случай поперечной плоскости сдвига с прямолинейными трещина-
ми сцепления, коллинеарными осям X и Y, ослабленной двумя двоякопериодическими 
круглыми отверстиями и армированными наполнителями. В процессе решения задачи 
ставится цель определить коэффициент интенсивности напряжений на концах трещин. 
Для этого задаются граничные условия по контуру круглых отверстий и заполняющим 
материалам. При этом на краях трещин задаются граничные условия. В процессе ре-
шения задачи с  использованием функций с  комплексными переменными получена 
система бесконечных линейных уравнений по контуру круглых отверстий. На берегах 
трещин получены сингулярные интегральные уравнения по заданным граничным ус-
ловиям. Метод Гаусса используется для решения сингулярных интегральных методов 
в системе конечных алгебраических методов. Одновременно была построена 3D-модель. 
Установлено, что напряжения в плоскости в состоянии интенсивной деформации имеют 
большие значения в конце трещин.
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По мере увеличения внешней нагрузки в плоскости вокруг отверстий образуются 
зоны повышенных напряжений, расположение которых имеет двоякопериодический 
характер. В зонах повышенных напряжений могут возникать трещины. Задача о за-
рождение трещины является важной задачей механики повреждений [1, 5, 10–12].  
Постановка этой задачи существенно расширяет первоначальную концепцию 
А. Гриффитса, согласно которой в материале всегда имеется большое количество 
мельчайших трещин. Образование (зарождение) трещины под нагрузкой соответ-
ствует данным фрактографических наблюдений. По мере увеличения интенсивно-
сти внешней нагрузки возле отверстий возникают зоны предразрушения, которые 
моделируются областями с  ослабленными межчастичными связями в  материале. 
Взаимодействие берегов этих зон моделируется путем введения между берегами 
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зоны предразрушения связей с заданной диаграммой деформирования. Физическая 
природа таких связей и размеры зон предразрушения зависят от вида материала. 
Так как эти зоны (прослойки перенапряженного материала) малы по  сравнению 
с остальной частью изотропной среды, ослабленной двоякопериодической системой 
круговых отверстий, их можно мысленно удалить, заменив разрезами, поверхности 
которых взаимодействуют между собой по некоторому закону, соответствующему 
действию удаленного материала.

Анализ предельного равновесия зоны предразрушения при поперечном сдвиге 
выполняется на основе критерия предельного сдвига связей материала и включа-
ет: 1) установление зависимости сил сцепления от сдвига берегов зоны предразру-
шения; 2) оценку напряженного состояния вблизи зоны предразрушения с учетом 
внешних нагрузок и  сил сцепления, а  также расположения жестких включений; 
3) определение зависимости критических внешних нагрузок от геометрических па-
раметров составной среды, при которых появляется трещина.

Формулировка задачи. Представьте себе изотропную среду, ослабленную двояко-
периодической системой радиусов круглых отверстий λ (λ < 1) и центрируется в точ-
ках

P m n hemn
i� � � �� � � � � �

1 2 1 2 12, , ,
где h m> > = ± ±0 0 0 1 22, Im , , , , ...ω .

Круговые отверстия среды заполнены абсолютно жесткими включениями, спаян-
ными вдоль обвода. Рассматриваемая поверхность подвергается поперечному сдвигу 
сил �xy

�  (рис. 1). В рассматриваемом случае возникновение зародышевой трещины 
в среде, ослабленной двумя двоякопериодической системой круглых отверстий, яв-
ляется процессом перехода зоны предразрушения в зону нарушенных связей между 
поверхностями материала.

Предлагается модель зарождения трещин в композитах с двоякопериодической 
структурой, основанная на  рассмотрении зоны процесса трещинообразования.  
Полагается, что зона процесса трещинообразования представляет собой слой ко-
нечной длины, содержащей материал с  частично нарушенными связями меж-
ду отдельными структурными элементами. Наличие связей между берегами зоны 
предразрушения (зоны ослабленных межчастичных связей материала) моделирует-
ся приложением к поверхности зоны предразрушения сил сцепления, вызванных 
присутствием связей.

Учет этих эффектов в задачах механики разрушения является важной, но очень 
сложной задачей.

Рис. 1. Схема расчета задачи зарождения трещины в среде с жесткими включениями  
при поперечном сдвиге.
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В исследуемом случае возникновение зародышевой трещины в среде, ослаблен-
ной двоякопериодической системой круговых отверстий, представляет собой про-
цесс перехода области предразрушения в  область разорванных связей между по-
верхностями материала. При этом размер зоны предразрушения заранее неизвестен 
и подлежит определению.

Исследования возникновения областей с нарушенной структурой материала по-
казывают, что в начальной стадии зоны предразрушения представляют собой узкий 
вытянутый слой, а затем с ростом нагрузки внезапно появляется вторичная система 
зон, содержащих материал с частично нарушенными связями.

Для математического описания зарождения трещины в изотропной среде, ослаб
ленной двоякопериодической системой круговых отверстий, заполненных жесткими 
включениями в рассматриваемом случае, приходим к задаче теории упругости для 
среды, когда в среде имеются зоны предразрушения. Зоны предразрушения ориен-
тированы в направлении максимальных касательных напряжений. Считается, что 
в изотропной среде имеются две двоякопериодические системы прямолинейных зон 
предразрушения, коллинеарных осям абсцисс и ординат неравной длины.

Волокна обеспечивают прочность и жесткость композита в направлении распо-
ложения волокон. Механические свойства и механизм разрушения композита опре-
деляются соотношением трех параметров: 1) прочностью волокон; 2) прочностью 
и жесткостью матрицы; 3) прочностью связи волокно–матрица.

Они используются в машиностроении, особенно транспортном, включая авиа-
строение, приборостроении, в электро- и радиотехнике, электронике, строительстве, 
сельском хозяйстве, медицине, спорте, для изготовления изделий бытового назна-
чения. Основу волокнистых композиционных материалов составляют армирующие 
волокнистые наполнители (ABH), объединенные в монолитный композиционный 
материал матрицей — вторым важным компонентом.

Дать какое-либо обобщенное описание всех волокнистых структур, применяе-
мых в качестве АВН, просто невозможно — их множество в связи с многочислен-
ными прикладными задачами создания из них материалов и изделий с самыми раз-
нообразными характеристиками. Каждая из перечисленных волокнистых структур 
имеет большое число вариантов, зависящих от технологии их получения и заданных 
свойств. Таким образом, используя различные виды АВН и технологические приемы 
их расположения в волокнистом композите, можно оптимизировать расположение 
армирующих волокон или нитей и добиться такого наиболее рационального вари-
анта, при котором большая часть армирующих волокон расположена в направлении 
главных действующих механических напряжений в условиях эксплуатации.

При действии внешней нагрузки на составное тело в связях, соединяющих берега 
зон предразрушения, возникают касательные усилия qx(x) и qy(y) соответственно. 
Эти напряжения заранее неизвестны и подлежат определению из решения краевой 
задачи механики разрушения по  граничным условиям, выражающим отсутствие 
упругих смещений вдоль обвода круговых отверстий, и  условиям на  берегах зон 
предразрушения соответственно [2, 6, 7]:

– в контурах круглых отверстий
	 u i� �� 0; 	 (1)

– на краях зон предразрушения:
– коллинеарная ось X

	 � �y xy xi iq x� � � ( ); 	 (2)
– коллинеарная ось Y

	 � �x xy yi iq y� � � ( ).

Соотношения, связывающие касательные силы в связях и смещения края пред-
варительно поврежденных участков, должны подтверждать основные отношения за-
дачи. Без ограничения общности представим эти соотношения следующим образом:
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	 u x u x Q x q x q xx x
� �� � � �( , ) ( , ) , ( ) ( );0 0  	 (3)

	 � �� �� � � �( , ) ( , ) , ( ) ( ),0 0y y Q y q y q yy y  	 (4)
где функции Q x q xx, ( )� � и Q y q yy, ( )� � — эффективное соблюдение ограничений; 
u u� ��� � — смещение края предразрушительных зон коллинеарной оси абсцисс; 

� �� ��� � — смещение края зон предразрушения коллинеарной оси ординат.
Для определения предельной величины внешней нагрузки, при которой про-

исходит зарождение трещины, постановку задачи необходимо дополнить услови-
ем (критерием) появления трещины (разрыва межчастичных связей в материале). 
В  качестве такого условия примем критерий критического сдвига берегов зоны 
предразрушения
	 u u IIc

� �� � �  на L1,
	 � � �� �� � IIc,на L2, 	 (5)
где δIIc — характеристика сопротивления материала среды трещинообразованию; 
L1 — совокупность зон предразрушения, коллинеарных оси абсцисс; L2 — совокуп-
ность зон предразрушения, коллинеарных оси ординат.

Метод решения задачи. Для решения задачи естественным образом объединяется 
метод, развитый при решении периодической упругой задачи, с методом [6] постро-
ения в явной форме потенциалов Колосова–Мусхелишвили, соответствующих не-
известным касательным смещениям вдоль зон предразрушения.

В теории упругости мы можем описать напряжение и смещение с помощью двух 
аналитических функций z x iy� �  [9]. Φ( )z  и Ψ( )z  с помощью формулы Колоссо-
вой–Мушелишвили
	 σ σ σ σθy x r z z+ = + = ( ) + ( )



2 Φ Φ ,  	

(6)
� � � � � ��

� �y x xy
i

r ri e i z z z� � � � �� � � �� � � � ��� ��
�2 2 22 � � ,

2� � �� �u i z z z z�� � � � � � � � � � �� ,

�� � � � � �z z� , �� � � � �� z z� ,
где μ — модуль сдвига материала; ν — коэффициент Пуассона; � � �3 4v — для пло-
ской деформации; � � �� � �� �3 1v v  — для плоского напряженного состояния; r, 
θ — полярные координаты.

На  основании формул Колосова–Мусхелишвили (6) и  граничных условий 
на контурах круговых отверстий (1) и берегах зон предразрушения (2) задача сво-
дится к отысканию двух аналитических в области D функций Φ( )z  и Ψ( )z  из краевых 
условий
	 � � � � � � �� � � �� � � � � � �� � � � ��� �� �e i2 0; 	 (7)

	 � � � �t t t t t iq tx� � � � � � �� � � � � � � � �, 	
(8)

	 � � � �t t t t t iq ty1 1 1 1 1 1� � � � � � �� � � � � � � � �,
где � � � ��� � �e m ni

1 2 , m n, , , , ...= ± ±0 1 2   ; t, t1 — аффиксы точек края зон 
предразрушения, коллинеарных осям абсцисс и ординат, соответственно.

Постановка задачи требует одновременно жестких включений � � �� �k  и исклю-
чения отверстий � �� �1 .

Решение краевой задачи ищется в виде (7)–(8)
	 � � � �( ) ( ) ( ) ( ),z z z z� � �1 2 3  	

(9)
	 � � � �( ) ( ) ( ) ( );z z z z� � �1 2 3
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z
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m

m m mm

( ) =
−( )

− −










∑ 2

2 1 – простое 

число означает, что сумма исключает индекс (m  = 0); интегралы в  (10) берутся 
по  прямым; L b a a b1 � � �� � � �� , ,∪ ; L d l l d2 � � �� � � ��, ,∪ ; g(t) и  g1(t1) — искомые 
функции, характеризующие сдвиг края зон предразрушения

		  g x
i d

dx
u x u x( ) ( , ) ( , )� �

�
��

�
�
�

� �2
1

0 0
�
�

 на L1, 	
(12)

		  g y
d
dy

y y1
2

1
0 0( ) ( , ) ( , )�

�
��

�
�
�

� ��
�

� �  на L2.

К соотношениям (9)–(12) необходимо добавить дополнительные условия, выте-
кающие из физического смысла задачи

		  g t dt
b

a

( )
�

�

� � 0, g t dt
a

b

( )� � 0, g t dt
d

l

1 1 1 0( )
�

�

� � , g t dt
l

d

1 1 1 0( )� � . 	 (13)

Приведем зависимости, которым должны удовлетворять коэффициенты выраже-
ний (9)–(11).

Из условий антисимметричности относительно осей координат находим:
Im�2 0k � , Im�2 0k � , k �� �1 2, , ... .

Следующее вытекает из условий постоянства главного вектора всех сил, действу-
ющих на данный момент, соединяя две конгруэнтные точки в D [8]

�
�
� �0

2

2
2

24
� .

При фундаментальной (13) функции (9)–(11) определяют класс задач с двоякопе-
риодическими нагрузками.

Нетрудно убедиться, что функции (9)–(11) при условии (13) определяют класс 
задач периодическим распределением напряжений. Неизвестные функции g x� � и 
g y1 � �, и постоянные α2k  и β2kдолжны быть определены из краевых условий (7) и (8). 

ꞌ
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В силу выполнения условий периодичности система граничных условий (7) заменя-
ется одним функциональным уравнением, например, на контуре � � �� ei , а система 
граничных условий (8) — краевыми условиями на контурах L1 и L2.

Для составления уравнений относительно коэффициентов α2k , β2k функций 
Φ3( )z  и Ψ3( )z  представим граничное условие (7) в виде

	 � � � � � � �� � � �3 3 3 3
2( ) ( ) ( ) ( )� � � �� �e i = ( ) + ( ) + ( ) + ( )f if i1 2 1 2θ θ ϕ θ ϕ θ ;  	 (14)

		  f if e i
1 2 1 1

2
1 1� � � � � � � ��� � � � � � � � � � �� �� � � �( ) ( ) ( ) ( ) , 	 (15)

		  � � � � � � � � � ��
1 2 2 2

2
2 2� � � � � � � � � � �� �i e i� � � �( ) ( ) ( ) ( ) .

Относительно функций f if1 2� �� � � � �, и � � � �1 2� � � � �i  будем считать, что они 
разлагаются на  � ��  в ряды Фурье. В силу антисимметрии эти ряды имеют вид
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Подставив сюда соотношения (12) и поменяв порядок интегрирования, после вы-
числения интегралов с помощью теории вычетов, находим
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Подставив в левую часть краевого условия (14) вместо �3( )� , �3( )� , ��3( )�  и �3( )�  
их разложения в ряды Лорана в окрестности z = 0, а в правую часть (14) ряды Фурье 
(16), и сравнивая коэффициенты при одинаковых степенях eiθ, получим две беско-
нечные системы алгебраических уравнений относительно коэффициентов α2k  и β2k
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Коэффициенты β2kопределяются соотношениями
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Требуя, чтобы функции (9)–(11) удовлетворяли краевому условию на берегу зоны 
предразрушения L1, получаем сингулярное интегральное уравнение относительно 
g(x) [5]

		  1

1
�

�
�

g t t x dt H x iq x
L

x� � �� � � � �� ctg ( ) ( ), 	
(19)

H x x x x x xs s s s( ) ( ) ( ) ( ) ( ).� � � � �� � � �

Аналогично, удовлетворяя граничному условию на линии L2, после некоторых 
преобразований получаем еще одно сингулярное интегральное уравнение относи-
тельно искомой функции g1(у):
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(20)		  N y iy iy iy iy iy( ) ( ) ( ) ( ) ( )� � � � � � �� � � �0 0 0 0 ,

		  � � �0 1 3( ) ( ) ( )z z z� � , � � �0 1 3( ) ( ) ( )z z z� � .
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Системы (17) и (18) совместно с сингулярными интегральными уравнениями (19) 
и (20) являются основными разрешающими уравнениями задачи, позволяющими 
определить функции g(x), g1(у) и коэффициенты α2k, β2k.

Методика численного решения и анализ. Воспользовавшись разложением функ-
ций ctg

�
�

z, sh�2 �
�

z  в основной полосе периодов, а также используя замену пере-
менных, сингулярные интегральные уравнения после некоторых преобразований 
приводим к  стандартному виду. Используя квадратурные формулы, сводим ос-
новные разрешающие уравнения (17), (18)–(20) к совокупности двух бесконечных 
систем линейных алгебраических уравнений и  к  двум конечным алгебраическим 
системам относительно приближенных значений p gk k
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В правую часть полученных систем входят неизвестные напряжения qx m�� � и 
qy m�� � в узловых точках, принадлежащих зонам предразрушения. Используя полу-
ченное решение, уравнения (12) представим в виде

		  g x
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Эти уравнения служат для определения усилий в  связях между берегами зон 
предразрушения. Для построения недостающих уравнений потребуем выполнения 
условий (2) в узловых точках, принадлежащих зонам предразрушения. При этом ис-
пользуем метод конечных разностей. В результате получим еще две системы из М 
уравнений, каждая для определения приближенных значений qx m�� � (m = 1, 2, …, M)  
и qy m�� � (m = 1, 2, …, M). Так как в перфорированном теле напряжения ограниче-
ны, то решение сингулярных интегральных уравнений следовало бы искать в классе 
всюду ограниченных функций. Следовательно, к системам (21), (22) следует доба-
вить условия ограниченности напряжений у вершин зон предразрушения
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Полученные системы уравнений (17), (18), (21)–(24) полностью определяют ре-
шение задачи. Для численной реализации изложенного способа были выполнены 
расчеты. Каждая из бесконечных систем урезалась до пяти уравнений. В численных 
расчетах полагалось M = 30, что соответствует разбиению интервала интегрирова-
ния на 30 чебышевских узлов. Так как размеры зон предразрушения неизвестны, 
разрешающая алгебраическая система уравнений (17), (18), (21)–(24) задачи являет-
ся нелинейной даже при линейных связях. Для ее решения используется метод по-
следовательных приближений, суть которого состоит в следующем: решаем объеди-
ненную алгебраическую систему при некоторых определенных значениях размеров 
зон предразрушения относительно остальных неизвестных. Остальные неизвестные 
входят в разрешающую систему линейным образом. Принятые значения размеров 
зон предразрушения и соответствующие значения остальных неизвестных не будут, 
вообще говоря, удовлетворять условиям ограниченности напряжений у вершин зон 
предразрушения. Поэтому, подбирая значения размеров зон предразрушения, бу-
дем многократно повторять вычисления до тех пор, пока условия ограниченности 
напряжений (24) не будут удовлетворяться с заданной точностью. В случае нелиней-
ного закона деформирования связей для определения касательных усилий в зонах 
предразрушения использовался итерационный алгоритм, подобный методу упругих 
решений [9].

Считается, что закон деформирования межчастичных связей в зоне предразру-
шения линейный при u u u� �

��� � �  и  � � �� �
��� � � . Первый шаг итерационного 

процесса счета состоит в решении системы уравнений для линейно-упругих связей. 
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Следующие итерации выполняются только в случае, если на части зоны предразру-
шения имеет место неравенство u u u� �

��� � �  или � � �� �
��� � � . Для таких итера-

ций решается система уравнений в каждом приближении для квазиупругих связей 
с  изменяющейся вдоль берегов зоны предразрушения и  зависящей от  величины 
усилий в  связях эффективной податливости, которая вычислена на  предыдущем 
шаге расчета. Расчет эффективной податливости проводится подобно определению 
секущего модуля в методе переменных параметров упругости [4]. Процесс последо-
вательных приближений заканчивается, когда усилия вдоль зоны предразрушения, 
полученные на двух последовательных итерациях, практически не различаются. Не-
линейная часть кривой деформирования связей аппроксимировалась билинейной 
зависимостью [8], восходящий участок которой соответствовал деформированию 
связей 0 � �� � �� �� �

�u u u  с их максимальным усилием связей. При u u u� �
��� � �  

закон деформирования описывался нелинейной зависимостью, определяемой точ-
ками u� �� �, �  и  � �c c,� �, причем при � �c � � имело место возрастающая линейная 
зависимость (линейное упрочнение, соответствующее упругопластической дефор-
мации связей).

Для определения предельно равновесного состояния среды, при котором появля-
ется трещина, используем условие (5). Используя полученное решение, условиями, 
определяющими предельную внешнею нагрузку, найдены следующие [2, 3]

		  Q r q r q ry y IId, ( ) ( ) ,� � � �  Q r q r q rx x IId
� � �� � �, ( ) ( ) .�  	 (25)

Здесь x d� � , x d� � �– координаты точек, где образуется трещина, соответственно.
В  результате численного расчета найдена длина зон предразрушения, усилия 

в связях и сдвиг противоположенных берегов зон предразрушения от параметра на-
гружения �xy

� .
На  рис.  2 представлены графики зависимости относительной длины зоны 

предразрушения � �� � �� �a � от  безразмерного значения внешнего нагруже-
ния � �xy

�
�  для различных значений радиуса отверстий (кривые 1–4): 1 0 2� �� . ; 

2 0 3� �� . ; 3 0 4� �� . ; 4 0 5� �� . .
На рис. 3. приведена зависимость усилий в связях qx xy��  вдоль зоны предразру-

шения от безразмерной координаты x a x a� �� � � � �� �� �2 2 для различных зна-
чений радиуса отверстий: λ = 0.2–0.5 (кривые 1–4).

Рис. 2. Зависимости относительной длины зоны предразрушения � �� � �� �a � от безразмерного 
значения внешнего нагружения � �xy

�
�  для некоторых значений радиуса отверстий 

λ = 0.2–0.5 (кривые 1–4).
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Совместное решение разрешающей алгебраической системы и условий (25) дает 
возможность (при заданных характеристиках трещиностойкости материала) опре-
делить критическую величину внешней нагрузки, размеры зон предразрушения для 
состояния предельного равновесия, при которых происходит появление трещины.

На основании полученных численных результатов на рис. 4 построены графики 
зависимости критической нагрузки � � �� �

�� xy  от расстояния a a� � � � для зоны 
предразрушения, коллинеарных оси абсцисс при λ = 0.3.

На рис. 5 представлена зависимость критической нагрузки τ*a при изменении 
длины зоны предразрушения � �� � � a для λ = 0.3, a� � 0 05. .

Рис. 3. Зависимости распределения касательных напряжений в связях qx xy��
вдоль зоны предразрушения для различных значений радиуса отверстий:

λ = 0.2–0.5 (кривые 1–4).

Рис. 4. Зависимость критической нагрузки � � �� �
�� xy  от расстояния a a� � � �  при λ = 0.3.
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Анализ предельно равновесного состояния тела с периодической системой жест-
ких включений и  берегами зон предразрушения со  связями между берегами при 
поперечном сдвиге, сводится к параметрическому исследованию разрешающей ал-
гебраической системы (17), (18), (21), (22)–(24) и деформационного критерия разру-
шения (25) при различных законах деформирования межчастичных связей материа-
ла, упругих постоянных и геометрических характеристиках перфорированного тела. 
Непосредственно из  решения полученных алгебраических систем определяются 
усилия в связях и сдвиг берегов зон предразрушения. Модель зарождения трещины 
со связями между берегами позволяет исследовать основные закономерности рас-
пределения усилий в связях при различных законах их деформирования, проводить 
анализ предельного равновесия среды с зоной предразрушения с учетом деформаци-
онного условия зарождения трещины, оценивать критическую внешнюю нагрузку 
и трещиностойкость материала.

Полученные соотношения позволяют исследовать предельно-равновесное состо-
яние среды с периодической системой круговых отверстий, заполненных абсолютно 
жесткими включениями, спаянными вдоль обвода, и ослабленной прямолинейны-
ми зонами предразрушения со связями между берегами коллинеарных осям абсцисс 
и ординат неравной длины при поперечном сдвиге.

Если посмотреть на цветовую шкалу, согласно нашим настройкам, начиная с си-
него цвета и  увеличивая его в  порядке возрастания, показаны области высокого 
потребления. Синий цвет — это та часть, где она не ощущается, а зеленый цвет — 
та часть, где она начинает ощущаться. Зеленый цвет можно принять за предел, при 
его превышении начинает увеличиваться избыточное потребление. Красный цвет — 
это та часть, где высокая область потребления. Вся эта цветовая гамма рассматри-
вается относительно друг друга. Паскаль выражается в  Н/м2. Зеленые стрелки — 
фиксированная часть. Остальные оси — это часть, на которую приводятся нагрузки 
(рис. 6). Моделирование эффекта давления дано как 5 Н/м2.

Для изучения состояния тела с  периодической системой жестких элементов 
и края зоны предразрушения со связями на поперечном участке между краями ис-
пользуется параметрическое исследование решения алгебраической системы (17), 
(18), (21), (22) и  (24), а  также различные законы деформирования межчастичных 
связей материала, упругость, постоянные и критерии катастрофического деформи-
рования геометрических свойств перфорированного тела (25). Из решения задачи 

Рис. 5. Зависимость критической нагрузки � � �� �
��a

xy  при изменении длины зоны предразрушения 

� �� � � a  при λ = 0.3, a* = 0.05.
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получены алгебраические системы, определены силы в соединениях предразруши-
тельных зон и дрейфе края. Модель зарождения трещин со связями между краями 
позволяет исследовать фундаментальные законы распределения сил в связях при 
различных законах деформирования, проанализировать их с учетом окончательно-
го равновесия среды с зоной предразрушения, оценить деформационное состояние 
зарождения трещины, критические внешние напряжения и вязкость разрушения 
материала.

Полученные результаты. Согласно полученным соотношениям, мы можем пред-
положить состояние предельного равновесия в двуякопериодической системе с кру-
глыми отклонениями, заполненными категорическими ограничениями, сварен-
ными по контуру, ослабленными линейными зонами предразрушений со связями 
между абсциссами, коллинеарными осями и ординатами, неравномерность длины 
в результате поперечного сдвига.

Финансирование. Данная работа финансировалась за счет средств бюджета Азер-
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