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Исследуются колебания, возникающие в системе при установке на упругом основании 
нескольких роторов, имеющих небольшой разброс динамических характеристик. В ка-
честве основания рассматриваются симметричные рамные конструкции, имеющие как 
линейные, так и нелинейные упругие характеристики. Показано, что в таких системах 
вследствие малой асимметрии происходит взаимодействие различных форм колебаний, 
а при определенных скоростях вращения роторов возникают неустойчивые резонанс-
ные режимы с резкими скачками амплитуд колебаний. Анализируется система, состо-
ящая из 4-х роторов, установленных на упругой квадратной амортизированной раме. 
Найдены условия возникновения неустойчивых режимов и наиболее опасные скорости 
вращения роторов. Приводятся расчетные и теоретические результаты. Для аналитиче-
ских исследований симметричной системы используется математический аппарат тео-
рии представления групп симметрии.
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Постановка задачи. На практике работающее оборудование, такое как роторы, 
устанавливается, как правило, на  своих амортизаторах на  упругом фундаменте. 
В статье рассматриваются динамические процессы в системе, состоящей из несколь-
ких роторов на упругом основании. Обычно даже одинаковое оборудование имеет 
некоторый разброс параметров вследствие технологических погрешностей, как на-
пример небольшое отличие в жесткости амортизаторов. Такие роторы далее назовем, 
следуя терминологии [1], почти одинаковыми. Если бы основание было абсолютно 
жестким, вибрация роторов происходила бы независимо друг от друга со своими 
близкими частотами. Но, вследствие упругости основания через фундамент проис-
ходит перекачка энергии, и вся система в целом уже является слабосвязанной. Это 
приводит к сложным динамическим процессам и взаимодействию различных форм 
колебаний, в том числе и к режиму биений. Достаточно часто в инженерной практи-
ке в качестве фундамента используются симметричные рамные конструкции, и при-
том имеющие нелинейные упругие характеристики, что привносит свою специфику 
в динамику системы. В настоящей статье рассматривается колебание системы из 4-х 
почти одинаковых роторов, расположенных симметрично на квадратной раме, име-
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ющей как линейные, так и нелинейные упругие характеристики. Для получения ана-
литических результатов используется математический аппарат теории представления 
групп симметрии [2–8].

Вибрационные взаимодействия при установке почти одинаковых роторов на упру-
гом основании. Исследуем вибрационные взаимодействия в системе, составленной 
из несбалансированных роторов, симметрично расположенных на своих аморти-
заторах на упругой амортизированной квадратной раме (рис. 1). Роторы вращают-
ся с одинаковой скоростью ω и имеют небольшой разброс упругих характеристик 
амортизаторов k k k k k jj j j= ± = << =∆ ∆, ( , ..., )δ 1 1 4  . Рассматриваются колеба-
ния системы вдоль вертикальной оси z при вращении несбалансированных роторов 
со скоростью ω. Предполагаем, что жесткость участков рамы между узлами состав-
ляет K(z) и также может быть нелинейной.

Рис. 1. Квадратная амортизированная рама с установленным роторами 1–4.

Собственные колебания таких систем, в том числе и нелинейных, были рассмо-
трены в [8] с помощью групповых подходов. Здесь мы исследуем вынужденные ко-
лебания. Для составления уравнений движения, как и в [8] используем локальную 
систему координат (xi, yi, zi) (i = 1, …, 4), симметричную относительно каждого узла 
(рис. 1): ось y направлена по биссектрисе соответствующего узла и для каждого по-
следующего узла оси координат поворачиваются на угол, равный 2π/n (n = 4). Урав-
нения колебаний симметричной системы в этих осях приобретают достаточно про-
стой вид, удобный для аналитических исследований. Так, матрица жесткости имеет 
вид

K4

1

2

3

4

�
�

�

�

�
�
�
�
�

�

�

�
�
�
�
�

� �
�

�

K + k K K
K + k K

K + k K
K + k

�

�

�

�

ам

ам

ам

амsymm

,,

где K K K� � � ам  — суммарная жесткость основания; Kам — жесткость амортизато-
ров под основанием; kiам — жесткость амортизаторов i-го объекта (i = 1, …, 4); m — 
масса ротора.

Рассмотрим вначале случай линейной упругой характеристики рамы. Матрицу 
демпфирования F положим пропорциональной матрице жесткости, т. е. F = ηK4.

В этом случае удобно использовать комплексные переменные [9]. Тогда для гар-
монических колебаний запишем

K z Fz K z K z K K4 4 4 4 41 1+ = + = = +� ( ) , ( )i iωη ωη .
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Уравнения вынужденных колебаний имеют вил
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(1)

Предположим вначале, что все амортизаторы, на которых установлены роторы, 
одинаковы: Δki = 0. В этом случае система становится строго симметричной. Ис-
пользуем теперь проективные операторы симметрии [3, 5–8]. Для симметрии типа 
квадрата этот оператор следующий:
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Каждому оператору симметрии соответствуют базисные векторы V = Pz, которые 
по существу определяют формы колебаний. В нашем случае это следующие векторы:
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Применяя групповое преобразование P4 (2), образуем матрицу D P D Ptr
4 4 4 4
* = . 

Если все амортизаторы имеют одинаковую жесткость, то система становится строго 
симметричной и матрица D4

*  распадается на независимые блоки
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Как следует из  (3): 1) вектор v1 и  соответствующий блок d 11
* в  (4) описывают 

синфазное перемещение всех роторов. Внешние силы входят только в этот блок, т. е. 
возбуждаются только синхронные колебания, в то время как все остальные формы 
колебаний не возбуждаются внешней силой; 2) вектор v4 и блок d 44

*описывают пе-
ремещение всех роторов в противофазе; 3) векторы v2, v3 и блоки d d22 33

* *,  описыва-
ют поворотные колебания рамы и роторов относительно взаимно-перпендикуляр-
ных осей x, y соответственно; они имеют кратные корни, что достаточно очевидно 
из физических соображений.
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Поскольку матрица D4
* распадается на независимые диагональные блоки, то все 

описанные выше поступательные и поворотные формы колебаний при сделанных 
предположениях являются независимыми.

Возникновение неустойчивых режимов при нарушении симметрии.
Будем теперь считать, что имеется небольшой разброс жесткостей амортизато-

ров: k k k ii i iам   .= ± = << =∆ ∆, ( , ..., )δ 1 1 4  Тогда система перестает быть строго 
симметричной и в матрице D4ε теперь появятся малые добавки δi, и после выполне-
ния умножения P D P4 4 4

tr
ε  найдем:
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(5)

Из (5) видно, что все диагональные блоки теперь связаны между собой; то есть 
формы колебаний уже не являются независимыми. Кроме того, при вынужденных 
колебаниях, несмотря на то что на каждый узел рамы производятся одинаковые воз-
действия с амплитудой P как по величине, так и по направлению, колебания си-
стемы не будут поступательными, возникают связанные поворотно-поступательные 
колебания.

Малые коэффициенты δ в  (5) отражают слабые взаимодействия между диаго-
нальными блоками и соответствующими им формами колебаний. Степень взаимо-
действия определяют безразмерные коэффициенты энергетической связи [7, 8]
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где hi, λi — собственные векторы и собственные частоты i-го диагонального блока; 
Kij — матрица жесткости связи между блоками i и j.

В [7, 8] показано, что при отсутствии кратных собственных частот поправки для 
частот и  собственных векторов имеют порядок ε. Однако, в  случае кратных соб-
ственных частот λi = λi+1 происходит их расслоение

� � � � � � �i i i is i i i ij io s o, ( ), ( ).� �� � � � � � �1 0
2

1� h h h h  (6)
Собственные векторы при этом резко меняются и возникают неустойчивые ре-

зонансные поворотные колебания рамы вокруг взаимно перпендикулярных осей 
с близкими частотами, что и вызывает режим биений при собственных колебаниях.

Пример расчета. В  качестве примера рассмотрим колебания квадратной рамы 
с установленными на ней почти одинаковыми роторами (рис. 1). Параметры этой 
системы следующие: рама образована балочными элементами, жесткость которых 
составляет K =1·106 Н/м, жесткость амортизаторов kiам = 0.3·105 Н/м. Жесткость 
амортизаторов, на которых установлена рама, 0.7·105 Н/м. Инерционные элементы 
М = 10 кг полагаем расположенными в узлах. Собственные частоты симметричной 
системы: ν (Гц): 50.3; 87.0; 87.0; 112.5; собственные формы совпадают с (3). Расчеты 
проводились с помощью программы Matrixcalc.org.

Предположим теперь, что имеется разброс жесткостных параметров амортиза-
торов: суммарная жесткость 2-го узла увеличилась на 3%, 3-го узла уменьшилась 
на 3%, а 4-го узла увеличилась на 6%.

Собственные частоты этой системы с  асимметрией жесткостных параметров 
ν (Гц): 51.3; 86.0; 89.3; 113.1.

Как видим, в соответствии с (6) происходит расслоение кратных частот. При этом 
наблюдается резкое изменение амплитуд колебаний при незначительном изменении 
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частоты возбуждения. Это иллюстрирует рис. 2, на котором представлены ампли-
туды колебаний роторов 1–3 при изменении частоты возмущающей силы в малом 
диапазоне 85–91 Гц. (амплитуды колебаний ротора 4 не представлены, чтобы не за-
громождать рисунок).

На  рис.  3 представлены амплитуды колебаний роторов 1–4 на  частотах 85 Гц 
и 89 Гц.

Коэффициент демпфирования η = 103 с. Как видно из рис. 3, несмотря на то что 
возмущающие силы в каждом узле равны как по величине, так и по направлению, 
колебания системы не являются поступательными, а представляют собой связанные 
продольно-поворотные колебания.

Колебания объектов на раме, имеющей нелинейные упругие характеристик. В [7] по-
казано, что при анализе собственных колебаний симметричных систем справедливо 
использование групповых операторов также и в случае нелинейных систем с нечет-
ной функцией нелинейности.

Понятие формы колебаний нелинейной системы ввел Р. М. Розенберг [10]. Он 
также выделил класс нелинейных систем, допускающих прямолинейные нормаль-
ные формы колебаний, к которым, в частности, относятся симметричные системы 

Рис. 2. Амплитуды колебаний роторов 1–3 при изменении частоты возмущающей силы в диапазоне 
85–91 Гц: красным цветом 1 отмечены амплитуды колебаний 1-го ротора, синим 2 – 2-го ротора, 

зеленым 3 – 3-го ротора.

(а) (б)

Рис. 3. Амплитуды колебаний асимметричной рамы: (а) — возбуждение с частотой ν = 85 Гц;  
(б) — возбуждение с частотой ν = 89 Гц.
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с потенциальной энергией. Проблеме нормальных колебаний в нелинейных систе-
мах посвящены также работы [11–14].

Предположим теперь, что жесткость амортизаторов fii(zi), а  также жесткость 
участков рамы fi(i+1)(zi – zi‑1) между узлами i и (i + 1) является нелинейной начетной 
функцией z (i = 1, …, 4), т. е. fi(i+1)(–z) = –fi(i+1)(z).

Уравнения колебаний рассматриваемой системы в этом случае имеют вид
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Применим далее к (7)–(10) оператор Р4 (2), найдем
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Подставляя последовательно базисные векторы (4) в уравнения (11), складывая 
затем полученные уравнения и учитывая нечетность функций fi(i+1)(z) и ортогональ-
ность базисных векторов, найдем аналогично [7] эквивалентную систему уравне-
ний (12) уже для переменныхvi – базисных векторов (4):
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Таким образом, получили несвязанные между собой нелинейные уравнения (12) 
для каждой переменной в отдельности, т. е. поступательные и поворотные формы 
колебания не связаны между собой, аналогично линейной системе, рассмотренной 
выше. Второе и третье уравнения, описывающие поворотные формы колебаний, 
оказались связанными в  силу неортогональности базисных векторов (4). Из  (12) 
видно, что, как и  в  случае линейной системы, внешние силы Psinωt возбуждают 
только синхронные колебания.

Легко видеть, что приведенные выше преобразования нелинейных уравне-
ний (7)–(10) фактически эквивалентны матричному умножению (4) для линейных 
систем.

Если в системе окажется небольшой разброс параметров жесткостей амортиза-
торов, то в уравнения колебаний (7)–(10) войдут малые члены, и поступательные 
и поворотные формы колебаний окажутся связанными. В этом случае вследствие 
нелинейности можно ожидать появления также и субгармонических резонансных 
режимов.

Выводы. Исследуются колебания, возникающие в системе при установке на упру-
гом основании роторов, имеющих небольшой разброс параметров. В качестве основа-
ния рассматриваются симметричные рамные конструкции, имеющие как линейные,  
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так и  нелинейные упругие характеристики. Анализируется система, состоящая 
из роторов, установленных на квадратной амортизированной раме. Показано, что 
вследствие небольшой асимметрии, несмотря на  синхронное возбуждение, в  си-
стеме происходят асимметричные связанные продольно-поперечные колебания. 
В определенных частотных диапазонах возникают неустойчивые режимы, характе-
ризующиеся резким скачкообразным изменением амплитуд колебаний. Найдены 
наиболее опасные скорости вращения роторов. Исследуются также системы, име-
ющие нелинейные упругие характеристики с  нечетной функцией нелинейности. 
Приводятся расчетные примеры, подтверждающие теоретические результаты. Для 
аналитических исследований используется математический аппарат теории пред-
ставления групп симметрии.

Финансирование. Данная работа финансировалась за  счет средств бюджета 
ИМАШ РАН. Никаких дополнительных грантов на  проведение или руководство 
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Конфликт интересов. Автор заявляет об отсутствии конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ
1.	 Ланда П. С. Автоколебания в системах с конечным числом степеней свободы. М.: Наука, 

1980. 360 с.
2.	 Любарский Г. Я. Теория групп и ее применение в физике. М.: Гостехиздат, 1957. 356 с.
3.	 Хаммермеш М. Теория групп и ее применение к физическим проблемам. М.: Мир, 2002. 

588 с.
4.	 Zlokovic G. M. Group Theory and G-vector Spaces in Structural Analysis: Vibration, Stability and 

Status. New York: Halsted Press, 1989. 283 р.
5.	 Dong B., Parker R. G. Vibration of multi-stage systems with arbitrary symmetry of stages: A group 

theory approach // J. of Sound and Vibration. 2022. V. 524. 116738.	
	 https://doi.org/https://doi.org/10.1016/j.jsv.2021.116738
6.	 Zingoni A. Group-theoretic exploitations of symmetry in computational solid and structural 

mechanics // Int. J. Numer. Meth. Engng 2009. V. 79 (3). P. 253–289.	
	 https://doi.org/10.1002/nme.2576
7.	 Banakh L. Ya., Kempner M. L. Vibrations of Mechanical Systems with Regular Structure. 

Heidelberg, New York, London: Springer, 2010. 261 p.
	 https://doi.org/10.1007/978-3-642-03126-7
8.	 Banakh L. Vibrations in Systems Possessing Geometric Symmetry: Effect of Asymmetry // J. of 

Mach. Manuf. and Reliab. 2024. V. 53 (5). P. 422–431.	
	 https://doi.org/10.1134/S1052618824700833
9.	 Диментберг Ф. М. Изгибные колебаний вращающихся валов. М.: Изд. АН СССР, 1959. 

247 с.
10.	Rosenberg R. M., Hsu C. S. On the Geometrization of Normal Vibrations of Nonlinear Systems 

Having Many Degrees of Freedom // Труды международного симпозиума по нелинейным 
колебаниям. Киев: Изд-во АН УССР. 1963. Т. 1. С. 380–416.

11.	 Маневич Л. И., Михлин Ю. В., Пилипчук В. Н. Метод нормальных колебаний для существен-
но нелинейных систем. М.: Наука, 1989. 216 с.

12.	 Маневич Л. И., Пинский М. А. О нормальных формах колебаний в нелинейных системах 
с двумя степенями свободы // Прикладная механика. 1972. Т. 8. Bып. 3. С. 83–90.

13.	 Блакьер О. Анализ нелинейных систем. М.: Мир, 1969. 400 с.
14.	Брюно А. Д. Локальный метод нелинейного анализа дифференциальных уравнений. М.: 

Наука, 1973. 253 c.


