ОЭММПУПроблемы машиностроения и надежности машин Journal of Machinery Manufacture and Reliability

  • ISSN (Print) 0235-7119
  • ISSN (Online) 3034-5804

Раскрой полуфабрикатов и изделий из сплавов титана методом лазерной резки

Код статьи
10.31857/S0235711925020114-1
DOI
10.31857/S0235711925020114
Тип публикации
Статья
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том / Номер выпуска 2
Страницы
89-99
Аннотация
В статье рассмотрен раскрой полуфабрикатов и изделий из сплавов титана методом лазерной резки. Изучен мировой рынок потребителей и производителей систем лазерной обработки. Проведены опытные работы на натурных образцах горячедеформированных плит и штамповок. Выполнена оценка производительности и показателей качества поверхности плоскости реза. Представлены результаты исследований показателей качества поверхности плоскости реза и приповерхностных зон термического влияния.
Ключевые слова
резка титан толстые плиты показатели качества поверхности плоскости реза лазер волоконный вспомогательный газ
Дата публикации
21.10.2025
Год выхода
2025
Всего подписок
0
Всего просмотров
25

Библиография

  1. 1. Giordano G. Which Cut is Best, Water or Laser? July 14, 2021. SME Media. URL: https://www.sme.org/technologies/articles/2021/july/which-cut-is-best-water-or-laser/
  2. 2. Laser cutting. October 24, 2023/ URL: https://engineeringproductdesign.com/knowledge-base/laser-cutting/.
  3. 3. Olexa C. C. The Future of Laser Technology. August 27, 2014. URL: https://fsmdirect.com/the-future-of-laser-technology/
  4. 4. The laser Cutting Machine Global Market. 2024–2033/ Published Jan. 2024. URL: https://www.thebusinessresearchcompany.com/report/laser-cutting-machine-global-market-report
  5. 5. Laser Cutting Machinesis Market report summarizes top key players overview as TRUMPF, Coherent, Inc, IPG Photonics Corporation, FANUC Corporation, among others. URL: https://www.fortunebusinessinsights.com/laser-cutting-machines-market-102879
  6. 6. Global Laser Cutting Machines Market Size, Share, Competitive Landscape and Trend Analysis Report by Technology (Solid-State lasers, Gas Lasers, and Semiconductor Laser), Process (Fusion Cutting, Flame Cutting, and Sublimation Cutting), and End User (Automotive, Consumer Electronics, Defense and Aerospace, Industrial, and Others): Global Opportunity Analysis and Industry Forecast, 2014–2022. May 2017. URL: https://www.alliedmarketresearch.com/laser-cutting-machines-market
  7. 7. Global Laser Cutting Machines Market by Technology (Solid-State lasers, Gas. URL: https://reportocean.com/industry-verticals/sample-request?report_id=31057
  8. 8. Kimla P. Realities of high-power fiber laser cutting. Nov. 17, 2021. URL: https://www.industrial-lasers.com/cutting/article/14212263/realities-of-highpower-fiber-laser-cutting
  9. 9. Sarrafi R., Jia J., Zhang J., Mendes M. Advances in cutting with ultrahigh-power fiber lasers. Sept. 20, 2022. URL: https://www.laserfocusworld.com/laser-processing/article/14282662/advances-in-cutting-with-ultrahighpower-fiber-lasers
  10. 10. Shcherbakov E. A., Fomin V. V., Abramov A. A., Ferin A. A., Mochalov D. V., Gapontsev V. P. Industrial grade 100 kW power CW fiber laser in Advanced Solid-State Lasers Congress / Eds. G. Huber, P. Moulton. OSA Technical Digest (online) (Optica Publishing Group, 2013), paper ATh4A.2. URL: https://opg.optica.org/abstract.cfm? URI=ASSL-2013-ATh4A.2
  11. 11. Игнатов А. Г. Новые тенденции в лазерном раскрое металла // РИТМ машиностроения. 2019. № 7. С. 20. URL: https://ritm-magazine.com/ru/public/novye-tendencii-v-lazernom-raskroe-metalla
  12. 12. Kovalev O. B. Actual principles of the simulation of state-of-the-art technologies of laser processing of materials // Proc. SPIE7996, Fundamentals of Laser-Assisted Micro- and Nanotechnologies 2010. 2011. Т. 7996. 799602. https://doi.org/10.1117/12.887239
  13. 13. Polyanski S. N., Butakov S. V., Mal’tsev L.V., Olkov I. S., Popov M. A., Leder M. O. Cutting Methods for Thick Titanium Alloy Slabs // Russian Engineering Research. 2018. V. 38 (9). P. 694. https://www.metalformingmagazine.com
  14. 14. Boudjemline A., Boujelbene M., Bayraktar E. Surface Quality of Ti-6Al-4V Titanium Alloy Parts Machined by Laser Cutting // Eng. Technol. Appl. Sci. Res. 2020. V. 10 (4). Р. 6062.
  15. 15. Andersson N., Granberg C. Laser cutting in Ti-6Al-4V sheet: DOE and evaluation of process parameters Informative. Diploma work. Department of Materials and Manufacturing Technology. Gothenburg, Sweden: Chalmers University of Technology. 2015. 38 p. URL: https://odr.chalmers.se/server/api/core/bitstreams/212a684c-ccad-4875-93e0-b1116f12816a/content
  16. 16. Riveiro A., Quintero F., Boutinguiza M., Del Val J., Comesaña R., Lusquiños F., Pou J. Laser Cutting: A Review on the Influence of Assist Gas // Materials 2019. V. 12. P. 157. https://doi.org/10.3390/ma12010157
  17. 17. Смородин Ф. К., Хайруллина Л. Р. К исследованию процесса лазерной резки титана в газовой струе кислорода и азота // Проблемы нелинейного анализа в инженерных системах. 2014. Вып. 2 (42). Т. 20. С. 87.
  18. 18. Ледер М. О., Соколов К. В., Бровин М. А., Попов М. В., Полянский С. Н. РФ Патент 2695092. Способ обрезки облоя штампованных поковок из титановых сплавов, 2019. 8 с.
  19. 19. Взаимосвязь параметров реза. URL: https://jetdivision.ru/stati/2-statya-1.html
  20. 20. Alsoufi M. S., Suker D. K., Alsabban A. S., Azam S. Experimental Study of Surface Roughness and Micro-Hardness Obtained by Cutting Carbon Steel with Abrasive WaterJet and Laser Beam Technologies // American Journal of Mechanical Engineering. 2016. V. 4 (5). Р. 173.
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека