- PII
- 10.31857/S0235711925020022-1
- DOI
- 10.31857/S0235711925020022
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume / Issue number 2
- Pages
- 12-23
- Abstract
- Проблемы машиностроения и надежности машин, Определяющие уравнения пластически деформируемого тела с реализацией на основе МКЭ в расчете оболочки при учете деформации сдвига
- Keywords
- Date of publication
- 21.10.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 28
References
- 1. Chernykh K. F. Nonlinear elasticity. St. Petersburg: Solo, 2004. (In Russ.)
- 2. Malinin N. N. Applied theory of plasticity and creep. M.: Yurayt, 2019. (In Russ.)
- 3. Bishop J. A displacement-based finite element formulation for general polyhedra using harmonic shape functions // Internat. J. Numer. Methods Engrg. 2014. V. 97 (1). P. 1.
- 4. Klochkov Y. V., Nikolaev A. P., Kiseleva T. A., Marchenko S. S. Comparative Analysis of the Results of Finite Element Calculations Based on an Ellipsoidal Shell // J. of Mach. Manuf. and Reliab. 2016. V. 45 (4). P. 328.
- 5. Javili A., Mc Bride A., Steinmann P., Reddy B. D. A unified computational framework for bulk and surface elasticity theory: a curvilinear-coordinate based finite element methodology // Comput. Mech. 2014. V. 54 (3). P. 745.
- 6. Ren H. Fast and robust full-guad-rature triangular elements for thin plates/ shells, with large deformations and large rotations. // Trans. ASME. J. Comput. and Nonlinear Dyn. 2015. V. 10 (5). P. 051018/1.
- 7. Nguyen N., Waas A. Nonlinear, finite deformation, finite element analysis // ZAMP. Z. Angew. Math. and Phys. 2016. V. 67 (9). P. 35/1.
- 8. Hanslo P., Larson Mats G., Larson F. Tangential differential calculus and the finite element modeling of a large deformation elastic membrane problem // Comput. Mech. 2015. V. 56 (1). P. 87.
- 9. Lei Zh., Gillot F., Jezeguel L. Developments of the mixed grid isogeometric Reissner-Mindlin shell: serendipity basis and modified reduced // Int. J. Mech. 2015. V. 54. P. 105.
- 10. Klochkov Yu., Nikolaev A., Vakhnina O., Sobolevskaya T., Klochkov M. Physically Nonlinear Shell Deformation Based on Three-Dimensional Finite Elements // Magazine of Civil Engineering. 2022. V. 5 (113). P. 11314.