RAS Energy, Mechanics & ControlПроблемы машиностроения и надежности машин Journal of Machinery Manufacture and Reliability

  • ISSN (Print) 0235-7119
  • ISSN (Online) 3034-5804

Определяющие уравнения пластически деформируемого тела с реализацией на основе МКЭ в расчете оболочки при учете деформации сдвига

PII
10.31857/S0235711925020022-1
DOI
10.31857/S0235711925020022
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume / Issue number 2
Pages
12-23
Abstract
Проблемы машиностроения и надежности машин, Определяющие уравнения пластически деформируемого тела с реализацией на основе МКЭ в расчете оболочки при учете деформации сдвига
Keywords
Date of publication
21.10.2025
Year of publication
2025
Number of purchasers
0
Views
28

References

  1. 1. Chernykh K. F. Nonlinear elasticity. St. Petersburg: Solo, 2004. (In Russ.)
  2. 2. Malinin N. N. Applied theory of plasticity and creep. M.: Yurayt, 2019. (In Russ.)
  3. 3. Bishop J. A displacement-based finite element formulation for general polyhedra using harmonic shape functions // Internat. J. Numer. Methods Engrg. 2014. V. 97 (1). P. 1.
  4. 4. Klochkov Y. V., Nikolaev A. P., Kiseleva T. A., Marchenko S. S. Comparative Analysis of the Results of Finite Element Calculations Based on an Ellipsoidal Shell // J. of Mach. Manuf. and Reliab. 2016. V. 45 (4). P. 328.
  5. 5. Javili A., Mc Bride A., Steinmann P., Reddy B. D. A unified computational framework for bulk and surface elasticity theory: a curvilinear-coordinate based finite element methodology // Comput. Mech. 2014. V. 54 (3). P. 745.
  6. 6. Ren H. Fast and robust full-guad-rature triangular elements for thin plates/ shells, with large deformations and large rotations. // Trans. ASME. J. Comput. and Nonlinear Dyn. 2015. V. 10 (5). P. 051018/1.
  7. 7. Nguyen N., Waas A. Nonlinear, finite deformation, finite element analysis // ZAMP. Z. Angew. Math. and Phys. 2016. V. 67 (9). P. 35/1.
  8. 8. Hanslo P., Larson Mats G., Larson F. Tangential differential calculus and the finite element modeling of a large deformation elastic membrane problem // Comput. Mech. 2015. V. 56 (1). P. 87.
  9. 9. Lei Zh., Gillot F., Jezeguel L. Developments of the mixed grid isogeometric Reissner-Mindlin shell: serendipity basis and modified reduced // Int. J. Mech. 2015. V. 54. P. 105.
  10. 10. Klochkov Yu., Nikolaev A., Vakhnina O., Sobolevskaya T., Klochkov M. Physically Nonlinear Shell Deformation Based on Three-Dimensional Finite Elements // Magazine of Civil Engineering. 2022. V. 5 (113). P. 11314.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library